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Instability of a viscous liquid of variable density 
in a vertical Hele-Shaw cell 

By R. A. WOODING 
Emmanuel College, Cambridge 

(Received 8 July 1959) 

Approximate equations of motion, continuity and mass transport are given for 
a viscous liquid of variable density moving very slowly between vertical and 
impermeable parallel planes. These equations are used to calculate approximate 
stability criteria when the liquid is at rest under a vertical density gradient. The 
results are applicable to the problem of the stability of a viscous liquid of variable 
density to two-dimensional disturbances in a porous medium. 

An exact stability analysis for the liquid between parallel planes is also given, 
and expansions in powers of the disturbance wave-number are obtained for the 
critical Rayleigh number at neutral stability. The previous approximate results 
are found to correspond to the leading terms of the series expansions. For the 
most unstable type of disturbance, the velocity distribution closely resembles 
plane Poiseuille flow, which was the form assumed in the approximate equations. 

An asymptotic expansion is derived for the critical Rayleigh number at neutral 
stability in a long vertical channel, or duct, the cross-section of which is a thin 
rectangle. The typical neutral disturbance possesses a ‘boundary layer ’ at each 
end of the cell cross-section, and this has a small stabilizing effect. 

The critical Rayleigh number for a long vertical channel of rectangular cross- 
section is found experimentally by comparing the density gradient of the liquid 
in the channel at neutral stability with the corresponding density gradient in a 
vertical capillary tube. There is better agreement with the exact theory than 
with the approximate theory, the experimental result being about 4 %  higher 
than the value predicted by the ‘exact ’ asymptotic expression, and about 10 yo 
higher than the value predicted by the simple approximate theory. 

1. Introduction 
It is well known (see Lamb 1932, 5330) that the flow of a viscous liquid at very 

low Reynolds numbers between parallel planes may be described by approximate 
equations of motion which have a simple form. Consider, in particular, vertical 
parallel planes which are separated by a small distance 2h. Take the origin of 
a rectangular co-ordinate system ( X ,  Y ,  2) midway between the planes, with 0 Y 
normal to them and with 02 directed vertically upwards. It will be assumed, 
first, that the component of velocity normal to the planes vanishes, so that the 
pressure P is a function of X and 2 alone, and secondly, that the components 
of velocity in the directions of OX and 02 are slowly varying functions of 
those co-ordinates. Then the velocity distribution is nearly parabolic in the 
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Y-co-ordinate, and if mean values are taken by integrating with respect to.Y, the 
mean-velocity vector is everywhere parallel to the hydraulic head. The approxi- 
mate equations of motion are 

where u and w are the components of the mean velocity, P, p and ,!A denote 
respectively the mean pressure, density and viscosity of the liquid, and g is the 
acceleration due to gravity. 

When p and p are constants, equation (I). and the equation of continuity 

au aw 
ax az -+- = 0 

together show that the mean motion is irrotational and that a rnean-velocity 
potential exists. Hele-Shaw (1898) has used this principle experimentally to 
render visible the streamlines of two-dimensional ideal potential flow about 
cylindrical bodies, and has treated, in a similar manner, lines of magnetic 
induction about elliptic cylinders and cylindrical shells (Hele-Shaw & Hay 1900). 

Saffman & Taylor (1 958) have observed that the equations (1)  are identical 
with Darcy's law for two-dimensional flow of a viscous liquid through a porous 
medium of permeability Qh2. Using this analogy, they have made theoretical and 
experimental investigations of the stability of the interface between two im- 
miscible viscous fluids in motion through a porous medium in a gravitational 
field. 

Since the observation of flow phenomena within porous materials is difficult, 
the use of a Hele-Shaw analogue in certain experimental problems could offer 
attractive possibilities. The work described in this paper arose from the investiga- 
tion of the instability of a liquid of variable density in equilibrium under gravity 
in a vertical tube filled with porous material (Wooding 1959). The Hele-Shaw 
analogue is a long vertical channel, with a horizontal cross-section in the form of 
a very narrow rectangle. 

Exact calculations of the stability of a viscous liquid of variable density 
between parallel planes have been made by Ostrach (1955) and by Yih (1959). 
However, these authors did not discuss the most unstable forms of infinitesimal 
disturbance that can arise. 

A more realistic approach has been adopted by Bentwich (1959)) who examined 
theinhibiting effect of horizontal magnetic fields upon the gravitational instability 
of fluid in a vertical tube of square or rectangular cross-section. Bentwich did not 
extend his work to the case of either infinite parallel planes or a Hele-Shaw cell. 
As these examples are of some importance, the gravitational stability theory is 
discussed in this paper. 

2. Approximate stability theory 
When the space between two parallel planes is filled by a liquid of variable 

density, the nature of the density distribution is influenced by both the mole- 
cular diffusion and by mechanical dispersion arising from the slow motion of the 
fluid. The relative importance of these effects can be estimated by adapting the 
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work of Taylor (1953, 1954a) and of Aris (1956) on mass transport of solute in 
tubes to the case of unidirectional flow between parallel planes. For simplicity, 
suppose that the fluid motion is in the 2-direction, and that the concentration of 
solute is a slowly varying function of Y and Z only. If gravity effects do not 
modify the velocity profile appreciably, it is found that the dissolved material is 
dispersed relative to a plane 2 = wt, moving with the mean velocity w, by a 
process resembling molecular diffusion but with a diffusivity 

2 w2h2 
K+-r-, lo;, K 

where K is the molecular diffusivity. This expression shows that, if the mean 
velocity is so small that the relation 

is satisfied, the effect of mechanical dispersion of the solute is negligible compared 
with molecular diffusion. When this condition applies, the density p can be 
treated as a slowly varying function of X and 2, and the approximate equations 
of motion and continuity, (1)  and ( 2 ) ,  will apply. A further equation, the equation 
of mass transport, is then found to be 

where u and w are the X -  and 2-components of the mean velocity, as before. The 
equations ( l ) ,  (2) and (3) are identical with the corresponding equations of two- 
dimensional motion in a porous medium of permeability $.h2 and unit porosity, 
saturated by a liquid of effective diffusivity K and of variable density p. 

At this stage, the equations are seen to possess a shortcoming. Because 
inertial terms are neglected in (l), the system of equations is of first order in the 
time, and initial values of velocity and density cannot be assigned independently. 
Clearly, the neglected terms must be significant in the initial stages of the motion. 
However, it  is easily shown that the inertial terms become negligible within a 
period of time of order h2/v seconds, where v is the kinematic viscosity, after which 
time the equations (1) become valid. 

Now consider a viscous liquid at rest between vertical parallel planes. For 
equilibrium, it is necessary that the unperturbed values of the pressure P and the 
density p should be functions of Z only. It will be assumed that the density 
gradient dp/dZ is a constant, and that the total variation in density is sufficiently 
small for p, and quantities depending upon p such as viscosity and diffusivity, to 
be considered constant to first order. 

It is convenient to introduce dimensionless spatial variables (x, z )  = ( X / h ,  Z / h )  
using h (equal to half the distance between the parallel planes) as the typical 
length unit. 

If a small perturbation of arbitrary form is added to the equilibrium value of 
the density, the pressure field will be perturbed and a small velocity (u, w),  a 
function of x, z and t ,  will appear. The linearized equations governing these small 
disturbances are determined from (l), (2) and (3). Suppose that one Fourier 



504 R. A .  Wooding 

component of the density disturbance is of form cos ax cos yz eWt, where a and y 
are dimensionless wave-numbers in the x- and z-directions, respectively. Then the 
linearized perturbation equations form a compatible system provided that 

where (5) 

is the Rayleigh number. 
Equation (4) is, of course, identicalin form with the corresponding compatibility 

equation for the stability of a viscous liquid in a porous medium (Lapwood 1948; 
Wooding 1959). The exact correspondence follows when h is replaced by a length 
unit b, determined by boundary dimensions in the (X, 2)-plane. Dimensionless 
wave-numbers ap, y p  are defined with respect to b, giving ap/b = a/h, and 
similarly for yp. In  place of (5), one has 

dp g(h2/3) b2 h b2 
dZ pK 3 hZ’ 

=----=-- 

where A, is defined as the Rayleigh number for a porous medium of permeability 
Qh2, saturated with a liquid, of viscosity p, which diffuses through the porous 
material with an effective diffusivity K .  

At neutral equilibrium (w = 0) ,  equation (4) gives 

This formula shows that, when y is held constant, the minimum value of A arises 
for a = y, corresponding to square convection cells. However, if a is held constant, 
h has a minimum value when y = 0, the fluid motion being in the form of long 
vertical columns. The first case arises when the vertical Hele-Shaw cell is of 
finite height, but of infinite horizontal extent-a situation which is analogous 
to that of Rayleigh instability in a porous medium (Lapwood 1948). The second 
case arises when the vertical cell is of finite width but of infinite height, the 
situation being analogous to that of a long vertical tube filled with porous material 
(Wooding 1959). In  each case, the boundary conditions along the edges of the 
strip must be expressed in an approximate form involving mean values of the 
density p and the velocity (u, w). At a horizontal edge, the vanishing of the 
horizontal velocity component u is ignored, since the effect of the non-slip condi- 
tion becomes inappreciable at a short distance from the edge. Similarly, the 
vanishing of w is ignored at a vertical edge. 

Some comparisons will be made later between the above approximate results 
and the results of ‘exact ‘ calculations in $33 and 4. 

3. Exact theory of neutral stability 
The approximate stability theory, based upon equations (l), (2) and (3), is 

satisfactory provided that the wavelength of the disturbance in each of the X- 
and 2-directions is large compared with the spacing between the parallel planes. 
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At shorter wavelengths, the analysis breaks down because the disturbance is no 
longer of a quasi-two-dimensional character. The effects of shear stresses in the 
X -  and Z-directions, and of molecular diffusion in the Y-direction, become 
apparent at  short wavelengths, and one would expect to  find the physical system 
rather more stable than the approximate theory predicts. 

Yih (1959) has given a proof, along the same lines as Pellew & Southwell 
(1940) for Rayleigh instability, of the ‘principle of the exchange of stabilities’ 
for a viscous liquid confined by vertical walls of unlimited height and heated from 
below, when the disturbance is periodic in the vertical direction, and also for walls 
of finite height bounded at the ends by horizontal conducting planes. In  the 
latter case, periodicity in the vertical direction is not a necessary assumption. 
Apart from the above restrictions, Yih’s proof is quite general, and is applicable 
to the work which follows. Then, since the behaviour of all neutral or amplified 
disturbances is aperiodic with respect to time, one may impose the condition 
a/& = 0 for neutral stability. 

Taking Cartesian axes as before, with the origin 0 midway between the parallel 
planes, 02 directed vertically upwards and 0 Y normal to the planes, one has the 
following differential equations governing a neutrally stable disturbance 

divu = 0, (7) 
(8) gS - grad p +pV2u = 0, 

where p is the primary density distribution, 8 and p are perturbations in the 
density and pressure, and u = (u ,v ,w)  is the velocity perturbation. In equa- 
tion (8), g = ( O , O ,  - g ) .  

The method of solution used here will follow that of Hales (1937), who examined 
certain problems in the stability of liquid in vertical tubes. 

To eliminate p ,  one takes the curl of (S), and obtains equations for the two 
non-zero components of the vorticity 

Elimination of u and v between (10) and (7) gives the usual result 

pv4w = gvp, (11) 

where 0; e V 2  - a2/aZ2. Then, if the spatial differentiations are referred to non- 
dimensional variables (x, y ,  z )  = ( X / h ,  Y/h,  Z /h) ,  (9) and (11) can be combined to 
p’ve the familiar equation 

and a similar equation for 9. Here h is the Rayleigh number defined in ( 5 ) .  

(12) V6W = hV?w, 

At the vertical insulating walls, the boundary conditions give 

u = v = w = 0 and aslay = 0 when y = & 1. (13) 
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Separable solutions of the equations, of suitable form, can be found by as- 
suming that a disturbance can be Fourier analysed into components with respect 
to both x and z. For example, let 

u = U(y) sin ax sin yz, ', 
v = ~ ( y )  cos ax sin yz, I 

w = W(y) cos OIX cos yz, 1 
8 = e(y) C O S ~  C O S ~ ~ .  I 

These represent components of a disturbance of cellular form in the (x, 2)-plane, 
having dimensionless wave-numbers a and y, respectively, The relative phases 
of u, v, wand 8, in the x- and z-directions, are determined by the relations (lo), etc. 

From (12) and (14), W(y) obeys the equation 

(D2 - a2 - y2)3  W = h(D2 - a') W ,  (15) 

where D = d/dy. (When one puts a = 0, this equation corresponds to the equa- 
tion (40) used by Yih (1959). The disturbance is then of two-dimensional type, 
and depends upon y and z only.) Yih has shown that solutions of equation (15) 
are of form exp ( -kp,y), where 

p: = a2+y2+mi  (i = 1,2,3) ,  (16) 

m3-hm-hy2 = 0. (17) 

mi being a root of the indicia1 equation 

9 The form of equation (15 )  is such as to entail separate treatment of even and 
odd solutions for W(y). If it  can be assumed that the disturbance of Hele-Shaw 
type introduced in $ 2  leads to the greatest instability, it  appears that the even 

solution 3 

W(Y) = c 4coshp,y (18) 
i=l 

is of greatest physical interest. For the corresponding odd solution, the hyper- 
bolic cosines are replaced by hyperbolic sines. 

In  order to impose the boundary conditions (13), it  is necessary to solve (9) for 8, 
and (10) for U and V ,  in terms of the solution (18) for W.  Use is also made of the 
equation of continuity (7) and the symmetrical nature of the boundary conditions. 
It is found that 

h2dp coshpiy O = - - ~ A ~ - ,  
K dZi,l mi 

i=l 

p.sinhpiy c A,"- 
i=l 

where a = (a2+ y2)*, and C is a constant. The boundary condition U = 0 on 
y = f 1 gives 
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If the boundary conditions V = W = DO = 0 on y L= +_ 1 are now imposed, the 
resultant characteristic equation is of the form 

where Li = pi tanh p i  - a2 tanh ala, 

and 

Mg = p ;  - UZ, 
N, = m; pi tanhp,. 

When the odd solution for W(y) is considered, the same characteristic equation 
is obtained, but with coshpi and sinhp, interchanged, and with tanh a replaced 
by cotha. When a tends to zero (in this latter case) the characteristic equation 
reduces to that given by Yih (1959, equation (46)). While still discussing three- 
dimensional disturbances, Yih made the assumption that the horizontal com- 
ponent of velocity parallel to the boundary planes was identically zero. However, 
it is clear from (19) that U does not necessarily vanish. 

The method of Yih can be used to show that, if a is assumed to have a fixed 
positive value, the critical Rayleigh number is stationary with respect to varia- 
tions in y when the wavelength of the disturbance in the z-direction tends to  
infinity. If the condition ahjay = 0 is imposed, it is easily shown, from (16) and 
( 17), that both api/ay and am,/ay (i  = 1,2 ,3)  contain y as afactor. Then, from (21), 
each of aL,/ay, aM,/ay and aNJay contains y as a factor. Following Yih, one 
differentiates the characteristic equation (20) with respect to y and puts 
ahjay = 0. Each of the three determinants so obtained contains a column 
proportional to  

whence the sum of the three determinants must vanish for y = 0. Thus the 
characteristic equation (20), and the condition ahlay = 0, can be satisfied 
simultaneously for y = 0. Since positive values of y involve larger gradients of 
velocity and density than when y = 0, it appears that the stationary point y = 0 
gives a minimum value of A. 

In  the special case y = 0, the roots of the cubic equation (17) reduce to 

m, = A+, m2 = A-4, m3 = 0, 

and the equations subsequent to (17) are found to simplify considerably. 
Equations (19) and (18), together with the boundary conditions, give 

COB ax, 
coshpy cosh qy u = v = o ,  w =  ___-___ 
coshp coshq 

where p = pl = (a2+ hi)), q = p z  = (a2 - hi)) and the equation (20) reduces to 

p tanhpfq tanhq = 0. (23) 

&$(tanh &$ - tan A&) = 0, 

For small a, h may be expanded in a series of ascending powers of a2. The leading 
term, say A,, of the series is given by solutions of the equation 

(24) 
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for which the root of smallest magnitude is zero. Then h is of order a2, and the 
transcendental functions in (23) may be expanded in series of powers of their 
arguments, leading to the result 

A = 3a2( 1 + &a2 + O(a4)). (25) 

A comparison with the result of $2-that h = 3a2 when y = &shows that the 
simple approximate analysis gives the first term of the series (25).  

It is of interest to note that, when both a and y are small but non-zero, an 
expansion of the characteristic equation (20) gives 

A =  3(a2 +y2)2 +terms of fourth order in a and y, 
a2 

for the smallest root of A, which corresponds to the equation (6) calculated from 
simple theory. If a has a constant value, this expression shows a t  once that the 
smallest root has a minimum value at y = 0. 

An expansion of w in (22) for the case A, = 0 and y = 0 leads to  

w = - 3 4 4  1 - yz) + o ( 4  cos ax, (26) 

that is, the velocity distribution is almost parabolic with respect to y. This 
supports the assumptions of Q 2 that the fluid motion resembles Hele-Shaw flow. 

For odd solutions, in the case y = 0, the hyperbolic cosines in (32) are replaced 
by hyperbolic sines, and the characteristic equation (23) is replaced by 

tanhp tanhq 

P q 
+- = 0, 

where p and q have the same meanings as before. If a series expansion in powers 
of a2 is assumed to exist, the leading term (A,) of the expansion is found to be 
given by solutions of tanh hi +tan 

= 0. (28) 
A$ 

Here the smallest root cannot be equal to zero, and it is, in fact, approximately 
equal to ( 0 . 7 5 2 8 ~ ) ~  NN 31.29. 

The numerical value h M 3 1.29 is given by Ostrach (1 955) and by Yih (1  959) as 
the critical value of the Rayleigh number for neutral stability. However, even 
when a = 0, this mode of disturbance is not as unstable as that arising when one 
takes the zero root of equation (24) with a finite but small. A physical explanation 
for the difference is readily found. Ostrach and Yih consider disturbance modes 
of two-dimensional form, the motion being restricted to the (y, 2)-plane. Factors 
contributing to the stability are shear stresses arising from velocity gradients in 
the y-direction and molecular diffusion in the y-direction. These factors apply for 
the most unstable disturbance of this type, when the fluid moves in two columns, 
one rising, say, in the range 0 < y < 1, and the other descending in the range 
0 > y > - 1. However, when the velocity disturbance is of Hele-Shaw type, the 
density perturbation is almost constant with respect to y; the physical factors 
contributing to the stability of the liquid are shear stresses induced by velocity 
gradients in the y-direction, and molecular diffusion in the x-direction. When the 
wave-number a tends to zero, the latter effect becomes negligible. 
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An alternative treatment of the case y = 0 makes use of the fact that equa- 
tion (12) simplifies if w is independent of x. The method was used originally by 
Sir Geoffrey Taylor for the problem of stability in a vertical tube. In  the simplified 
form, (12) becomes 

This expression states that (Vj-A) w is an harmonic function of x and y which 
vanishes at  the boundaries (from (9) and (1 1) and the boundary condition w = 0) 
and therefore vanishes everywhere. Then the fourth-order equation 

(Vj-A) w = 0 (29) 

is equivalent to (12). This is the same differential equation as that governing the 
transverse displacement of a freely vibrating thin elastic plate. 

When the boundaries are two vertical and parallel insulating planes, the 
boundary conditions (13) reduce to 

d w = -(V?W) = 0, 
a Y  

and solutions of equation (29) give the results described in equations (22) to (26). 
It is perhaps worth noting that, if the boundaries are two vertical and parallel 

conducting planes, the even solutions of (29)) with boundary conditions 

w = v;w = 0, 

are of form w = cos ry cos ax, 

where r2+a2 = A* and r = (n+*)n (n = 0 , 1 , 2 ,  ...). The most unstable case 
arises when n = 0, and 

h = ( in2  + a2)' + Ail4 M 6.09 

when a --f 0. In this example, h tends to a finite limit because the effect of mole- 
cular diffusion to (and from) the conducting walls remains significant when a 
becomes very small. Again, the velocity distribution is approximately parabolic 
in the y-direction. Ostrach (1955) briefly examined the two-dimensional modes 
of disturbance between vertical parallel conducting walls in connexion with the 
thermal instability of a viscous fluid, but the above more unstable mode was not 
discussed. 

4. Instability in a long vertical channel of rectangular section 
Some consideration will now be given to the calculation of the criterion for 

neutral stability in a vertical Hele-Shaw cell which is closed by boundaries in the 
(2, 2)-plane. Two basic boundary configurations have been mentioned briefly 
in $2. 

Suppose that vertical parallel planes, of width 2b and spaced a distance 2h 
form the sides of a Hele-Shaw cell of great depth, the cell being closed by im- 
permeable vertical boundaries a t  the sides x = -t L (L  = b/h 3 1). The dimen- 
sionless wave-number y in the x-direction will be assumed to be zero, but the 
wave-number a in the x-direction must be finite. As L is large, the problem of 
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determining the Rayleigh number h at neutral stability is similar to the problem 
of determining the characteristic frequency of a narrow rectangular plate, 
vibrating freely in the lowest transverse mode for which the average displacement 
is identically zero. From previous considerations, it would appear that a distur- 
bance motion antisymmetric about x = 0, but symmetric about y = 0 (taking the 
origin of dimensionless co-ordinates midway between the planes, as before) will 
furnish the lowest eigenvalue for which the mean displacement of the plate, or the 
net vertical flux of the fluid, will vanish. 

The appropriate differential equation for the vertical velocity w is given by (29), 
and the boundary conditions upon the four vertical insulating walls are 

a 
ax 
a 

aY 

w =-(VZ,w) = 0 on x =  f L ,  

w=-(VZ,w)=O on y =  51. 

This problem can be treated by Taylor's classical method of expansion in 
Fourier series (Taylor 1933). Consider the expression 

W coshp,y coshq,y . a,x 
w =  n=O ' ( A " ( ~ h p ~ - o o s h p ,  ) sinL 

sinh r,x + ) cosa,g], (31) 
+ Bn(r, coshr,L s, cosh s, L 

where a, = (n + 8)  7 ~ ,  and A ,  and B, are constants. Each term in (31) satisfies the 
boundary conditions (a/ax) V!w = 0 on x = & L and w = 0 on y = +_ 1, and the 
differential equation (29) is satisfied provided that 

(32) 1 put = a 2 , p  +A&, q: = a : p  - hi, 

r: = aE+hh, 8: = & - A & .  

It is necessary to determine non-trivial values of the constants A ,  and B, in such 
a waythat (31) satisfies the conditions w = 0 on x = & L and @lay) VZ,w = 0 on 
y = & 1. This will be possible only if a certain characteristic equation, which 
relates h and L, can be satisfied. The values of A ,  and B, are determined as 
follows. Since w is an even function of y which vanishes on the boundaries 
y = & 1, it is clear that w may be represented on the boundaries x = f L by a 
Fourier series in cos a,,, y, where rn = 0,1 ,2 ,  . . . . The vanishing of w on x = & L then 
requires that each coefficient of the Fourier series so obtained should be zero. 
Similarly, (a&) V2,w may be represented on the boundaries y = & 1 by a Fourier 
series in sina,x/L. The vanishing of @jay) V2,w on y = f 1 then requires that 
each Fourier coefficient be zero. Proceeding in this way, one obtains two infinite 
systems of equations 

m 

W 1 (33) 
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A = 

51 1 

1 Po, 0 Po, ... 
-Po, 1 -P1, 0 ... 

0 PI, 1 PI, ... = 0, (35) 

-Po, 0 -PI, 1 ... 
... ... ... ... ... 

The coefficients of A ,  and B, are 

K m n  = am, PdPn tanhpn + qn tanh qn),  

L,, = __ 
2h*( - )m+na, 

( ak/L2 + uk)2 - h ' 

&,=- -L  nm, 

Nmn= s - 

Smn being the Kronecker delta. 

> (34) 

where a, = &r and 

(37) 
1 1  

s = -+-+... M 1.0045. 
15 35 

Each term in the s-series (37) arises from a term in the B,-series in (31). Now, 
the form of the B,-series is such as to give an exponentially small contribution 
except in a region close to each of the ends (x = * L )  of the rectangular cross- 
section. It follows that the fluid motion near x = * L is of boundary-layer type, 
the thickness of the layer being of order h.  It is to be concluded that the terms 
involving s in (36), which increase the critical value of h, are contributions due to 
these layers. As expected, the result of putting s = 0 in (36) gives an expression 
of the form (25), which is applicable when no boundary layer is present. 

The analogy of the above theory with that of a thin elastic plate vibrating 
transversely shows that the same end-phenomenon will appear in the latter 
problem. 

5. Experimental work 
The experimental method used by Taylor (19543) to measure the density 

gradient of a solution in a vertical tube under conditions near neutral stability, is 
easily adapted to the case of a vertical channel of rectangular section. 
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An experimental apparatus employing two tubes connected to a reservoir A is 
shown in figure 1. The purpose of this arrangement is to compare the density 
gradient a t  neutral stability in the rectangular channel B with the corresponding 
density gradient in the capillary tube C, for which the value of the critical 
Rayleigh number is well established. Initially, the vertical channel and the 
capillary tube are filled from the bottom with a transparent liquid of uniform 
density p,. A coloured solution of slightly greater density p1 is poured into the 
reservoir A .  Since the system is dynamically unstable, convection currents are 

A 

! - 2hL - 

FIGURE 1 FIGURE 2 

FIGURE 1. Apparatus used for the comparison of density gradients at neutral stability. 
A = 1OOml. reservoir, B = rectangular channel, C = capillary tube. 

FIGURE 2. Cross-section through the recta.ngular channel. A = glass strips, B = 30 s.w.g. 
wire, C = cement. 

set up in both vertical tubes. When equilibrium has been reached, the density of 
the liquid in each tube decreases with depth at very nearly the critical rate, from 
the value p1 at the reservoir to the value po at an appropriate point some distance 
down each tube. Below those points, the liquid has uniform density p,. Obviously, 
the depth of penetration of the colouring material indicates approximately the 
position at which the density of the liquid has decreased to p,. If the dimensions 
of the channel and capillary tube are known, the ratio of the respective Rayleigh 
numbers can be calculated from the formula 

where h is the critical Rayleigh number in the vertical rectangular channel, 
2h is the spacing of the parallel planes, and 2, is the depth of penetration of the 
upper liquid into the channel at neutral stability, A, NN 67-94 is the critical 
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Rayleigh number in the vertical capillary tube (from theory, Taylor 195421)) 
a is the radius of the tube and 2, is the depth of penetration of the upper liquid 
into the tube at neutral stability. An advantage of this comparison method is 
that the density, viscosity and diffusivity of the liquid need not be known when 
calculating the ratio A/&. 

The rectangular channel used consisted of two flat glass strips about 40cm 
long, which were cemented together with Araldite (a commercial two-component 
cement) using two stretched 3Os.w.g. wires of diameter 0.0315 cm as spacers 
(figure 2). This was not an ideal arrangement, as the spacing between the wires 
was not quite constant at all points along the channel. However, the variation in 
spacing was not great, and it was sufficient to take an average value in the 
numerical calculations. A further disadvantage arose from the fact that the ends 
of the internal cross-section were not truly rectangular, but, as the spacing 
between the two wires was more than twenty times their diameter, the effect of 
the shape of the ends upon the stability characteristics should be small. 

The average width of the internal cross-section of the channel, shown in 
figure 2, was obtained by measurement of enlarged photographs; the spacing of 
the glass strips was obtained from micrometer measurements. In  the case of the 
capillary tube, the internal volume was found by filling the tube with a measured 
volume of water, and from this the average radius was calculated. The results 
were 2Lh = 0.675 cm for the width and 2h = 0.0320 cm for the thickness of the 
cell, and a = 0.165 cm for the radius of the capillary tube. 

Since the critical Rayleigh number for this cell in the vertical position was of 
order 10-2, a fairly viscous liquid was chosen-a water-glycerol mixture in equal 
proportions by weight, having a viscosity of about 0.06 poise. Portion of this 
mixture was coloured with methylene blue for addition to the reservoir at the top 
of the apparatus. The density ratio between the coloured and clear solutions was 
adjusted to about 1.002 by dissolving a small quantity of sodium chloride in a 
further portion of the clear mixture, and adding it drop-by-drop to each solution 
in turn. 

During the progress of the experiment, the apparatus was kept in a darkened 
room in which temperature variations were small. A period of about 12 days 
elapsed before convective motion ceased in the rectangular channel. 

After equilibrium had been reached in both the capillary tube and the rect- 
angular channel, the respective depths of penetration of the coloured liquid were 
found to be 2, = 75.0 cm and 2, = 24.4 cm. When these values, together with the 
measured values of h and a, were substituted into (38), the result h = 1-85 x 10-2 
was obtained. 

From the given dimensions of the cross-section of the rectangular channel, the 
ratio L = 21.1. Substituting this value into equation (36)  gives h M 1.77 x 10-2, 
which is about 4% lower than the experimental value. The first term of (36)) 
which corresponds to the result derived from the simple theory of $2, gives 
h M 1-66 x 10-2. This is about 10 yo lower than the experimental value. 

Although the contrast in the magnitude of the errors is not very great (4-10 yo), 
it seems reasonable to explain the first of these in terms of experimental error, and 
to attribute the increase in the second of these to shortcomings of the simple 
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approximate theory. In  particular, the measured value of h could be in error by 
about 1 yo, and the inaccuracy of the cell construction may have been a contri- 
buting factor. It is also possible that the measured depth of penetration of the 
upper liquid into the Hele-Shaw cell was underestimated due to a slow progressive 
loss of coloration of the methylene blue. This effect can be produced by oxidation 
by incident light, by reaction with other substances in solution, or by bacterial 
action. A further possibility, that the denser coloured fluid 'overshot' its equi- 
librium position in the capillary tube, has been considered, but this seems to have 
been unlikely in the present instance, when the density contrast (pl/po M 1.002) 
was very small. 

Figures 3, 4 and 5 (plate 1) illustrate the motion of the coloured liquid in 
the vertical rectangular channel while convection was in progress. In the early 
stages of the motion, a finger of coloured fluid passed down the middle of the 
channel, the interface near the leading edge being quite sharp (figure 3(a)).  
Before molecular diffusion had widened the coloured region appreciably, its width 
appeared to be equal to about one-half the width of the channel. Evidently the 
two liquids were behaving in a ' quasi-immiscible ' manner, the finger of coloured 
fluid resembling those fingers observed by Saffman & Taylor (1958) in their 
experiments on the motion of an interface between immiscible liquids in a Hele- 
Shaw cell. 

Figures 3 ( b )  and (c) show the break-up of the symmetrical finger of coloured 
fluid. While the finger was less than about 6 ern in length, the rate of descent at  the 
leading edge decreased approximately exponentially from an initial rate of about 
3 cm/h. However, when a depth of 6 cm had been exceeded, a fairly abrupt change 
occurred in the character of the motion, and thereafter the rate of descent was 
almost constant at about 0.09 cm/h. 

The change in character of the motion at a depth of 6 cm would be expected 
from the results of the stability theory. Since the maximum depth of penetration 
was about 24 cm, when the lowest mode of disturbance would be just stable, it 
follows that 6 cm corresponded to that depth of penetration at which the distur- 
bance mode with twice the wave-number became stable. When the Rayleigh 
number, based upon the average vertical density gradient of the liquid in the cell, 
decreased sufficiently for the latter mode to become damped, only a finite develop- 
ment of the lowest mode of disturbance could be self-sustaining. The subsequent 
photographs (figure 4) show the new convective motion, with the heavier coloured 
fluid moving down one side of the channel. 

The sequence of figure 4 also shows that the finite-amplitude motion of the 
liquid down the side of the channel was itself unstable, the predominant down- 
ward motion appearing first upon one side of the channel, and then upon the 
other. 

In  the final sequence, figure 5, the motion leading to a stable state is shown; the 
effect of molecular diffusion across the channel became predominant, and, in 
figure 5(c), the coloured fluid had diffused right cross the channel. That stage 
indicated the completion of the convective motion. 

It is hoped that a more detailed treatment of the observed convective pheno- 
mena will be given in a later paper. 
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